
Hindawi Publishing Corporation
Molecular Biology International
Volume 2012, Article ID 910707, 7 pages
doi:10.1155/2012/910707

Research Article

Förster Resonance Energy Transfer between
Core/Shell Quantum Dots and Bacteriorhodopsin

Mark H. Griep,1, 2, 3 Eric M. Winder,2, 4 Donald R. Lueking,2, 4 Gregory A. Garrett,5

Shashi P. Karna,3 and Craig R. Friedrich1, 2

1 Department of Mechanical Engineering Mechanics, Michigan Technological University, 815 RL Smith, 1400 Townsend Drive,
Houghton, MI 49931, USA

2 Multi-Scale Technologies Institute, Michigan Technological University, 815 RL Smith, 1400 Townsend Drive, Houghton,
MI 49931, USA

3 WMRD, US Army Research Laboratory, 4600 Deercreek Loop, Aberdeen Proving Ground, Adelphi, MD 21005, USA
4 Department of Biological Sciences, Michigan Technological University, 815 RL Smith, 1400 Townsend Drive, Houghton,
MI 49931, USA

5 SEDD, US Army Research Laboratory, AMSRD-ARL-SE-EM, 2800 Powder Mill Road, Adelphi, MD 20783, USA

Correspondence should be addressed to Mark H. Griep, mhgriep@mtu.edu

Received 23 March 2012; Accepted 2 May 2012

Academic Editor: E. E. Strehler

Copyright © 2012 Mark H. Griep et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR)
is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the
bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative
energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to
13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD
energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the
bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a
significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging
technologies.

1. Introduction

Integrated nano biosystems are expected to offer applications
in multiple technologies, such as biodetection and sensing
[1, 2], biomedical diagnostics [3], single molecule dynamics
[4], and photovoltaics [5]. In this work, the fundamental
properties of such multifunctional hybrid nano biosystems
involving core-shell quantum dots (QDs) and the optical
protein bacteriorhodopsin (bR) are presented.

Bacteriorhodopsin has been a subject of intense study
over the past four decades due to its photoconducting
properties and exceptionally high long-term stability against
thermal, chemical, and photochemical degradation [6–8].
As a retinal protein found in the cell membrane of the
extremophile Halobacterium salinarum, it is utilized to

generate a proton motive force that energizes ATP synthase to
drive the conversion of ADP and Pi to ATP and H2O, thereby
providing the energy to drive the cell’s internal machinery
[9]. The proton motive force is achieved when bR’s attached
retinal chromophore absorbs photons in the 570 nm region,
resulting in a cis-trans isomerization of the retinal. This
structural alteration initiates proton transport from the
retinal region to the extracellular side of the membrane
creating a proton gradient within the membrane, with
subsequent reprotonation from the cytoplasm [10]. This
proton gradient across the cell membrane, which facilitates
ATP synthesis in living systems, can be utilized to produce
a measurable electrical response in engineered applications.
Applications of bR require it to be extracted from the H.
salinarum bacterial system, which results in purified purple
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membrane (PM) fragments, on average 470 nm in diameter,
which are composed of multiple bR molecules and their
associated lipids. With its high stability in extreme conditions
and functional lifespan of several years in both wet and
dried states [11], bR (differential photocurrent) has been
previously utilized in a wide array of applications including
photoimaging [12], light-sensitive alarm devices [13], solar
cells [14–16], and holographic memory [17].

One potential hindrance to the broad application of
bR in engineered devices is its relatively limited spectral
activation range. Here, this issue is addressed by coupling
bR to inorganic QDs capable of capturing a broader
spectral range and transferring the captured energy directly
to the bR retinal. Inorganic QDs or nanoparticles (NPs)
are known to absorb photons with energy over a wide
range of the spectrum from ultraviolet to the visible and
exhibit bright, atom-like narrow emission bands in the
visible that can be further tuned by changing the size or
composition of the particles [18, 19]. Furthermore, QDs
exhibit exceptionally high chemical and physical stability,
low-photobleaching, and the ability to bind with multiple
organic and biomolecules. Such properties have made QDs a
desirable source of photons for the study of the photoassisted
structural changes and dynamics of biomolecules [1, 2, 4]. Of
particular significance has been the Förster resonance energy
transfer (FRET) [20], a nonradiative energy transfer, process
between inorganic QDs and fluorescent biomolecules [21,
22]. When inorganic QDs and biomolecules are suitably
conjugated such that their spatial separation is less than
10 nm and the fluorescence emission from the QD overlaps
with the absorption spectrum of the biomolecules [22,
23], the QD donor can nonradiatively transfer energy to
the biomolecule acceptor. QD biomolecule FRET has been
successfully used to develop and demonstrate QD-based
biomolecular detection systems [1, 4, 22].

In the present work, we show that bR molecules and
colloidal QDs together have the ability to participate in
FRET coupling. The retinal molecule of bR has a strong
absorption band which makes it a viable FRET acceptor [24–
26], and, as shown in Figure 1, an optically tuned QD can
be engineered for maximal overlap between its emission and
the bR absorption spectra. For this reason, QD activation of
bR via FRET has been of considerable interest in recent years
[27–30]. However, previous studies could not distinguish
FRET coupling between QDs and bR apart from other
energy transfer processes. In the present study, we investigate
the effects of QD-bR separation distances and excited state
lifetime decay of QDs to establish FRET-mediated energy
transfer to bR.

The spectra displayed in Figure 1 were obtained with
equal concentrations of QD and PM solutions, with the 1st
QD absorption peak, occurring at 544 nm, having approx-
imately 5 times the magnitude of the bR570 nm absorption
peak. The QDs used in this study were 565 nm emission
carboxyl-coated CdSe/ZnS (Invitrogren) core-shell QDs. An
integration analysis of the absorption spectra reveals that
each individual QD yields an approximate 21-fold increased
photonic absorbance capacity over the bR molecule in the
270 nm–670 nm energy region. Utilizing the spectral overlap

1

0.8

0.6

0.4

0.2

0
270 370 470 570 670

N
or

m
al

iz
ed

 a
bs

or
ba

n
ce

 (
a.

u
.)

Wavelength (nm)

N
or

m
al

iz
ed

 Q
D

 e
m

is
si

on
 (

a.
u

.)

1

0.8

0.6

0.4

0.2

0

QDabs

QDem

PMabs

QDabs

QDem

PMabs (3x)

Figure 1: QD and bR spectra comparison at equal concentrations.
QD absorption (green dashed) and emission (green solid) spectra
with the bR absorption spectrum (purple solid, magnified by a
factor of 3) strongly overlapping the tailored QD emission.

of the QD emission peak with the broad bR570 nm retinal
absorption region, the substantial QD energy capturing
capacity can potentially be linked to the bR molecule through
FRET in a properly engineered system.

2. Experimental Methods

2.1. Preparation of QD-bR Hybrid System. To achieve and
maintain a constant QD-bR separation distance within the
FRET coupling region, two different types of linkers were
utilized to achieve two different separation distances. The
shortest linkage was achieved by creating an amide bond
between a QD carboxyl group (565 nm ITK Carboxyl-
QD, Invitrogen) and an amine on the bR molecule. This
zero-length linkage was achieved through 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride (EDC)
linker techniques. An amide linkage between the carboxyl-
QD and bR amino group results in an estimated separation
distance of 3 nm–5 nm between the QD core surface and the
bR retinal.

Secondly, a biotin-streptavidin protocol was used to
achieve an approximate 7 nm–9 nm separation distance
between the QD core surface and the bR retinal. This
method utilized biotinylated bR and streptavidin-coated
QDs (595 nm emission, Evident Technologies). Streptavidin,
a 53 kDa protein, and biotin, also known as vitamin H or
B7, are together widely regarded as the strongest nonco-
valent bond in nature, with a dissociation constant (Kd)
of 4 × 10−14 M [31]. With its robust nature and virtually
unbreakable bond, the biotin-streptavidin binding scheme
has been previously used as nanoparticle linkers [32, 33]. In
the present study, the biotin-streptavidin linkage was utilized
to link biotinylated bR with streptavidin-coated quantum
dots. The bR retinal/QD separation distance due to this bond
is estimated to be ∼7 nm–9 nm, assuming the streptavidin
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Figure 2: (a) Jablonski diagram showing FRET between a donor and an acceptor molecule. The purple arrow shows QD absorption, yellow
arrow shows vibrational relaxation, and red solid arrow shows fluorescence. Solid blue arrow shows nonradiative energy transfer from the
donor QD to acceptor biomolecule. (b) Theoretical FRET efficiency of a 565 nm emission QD (donor)-bR (acceptor) pair over a 0 nm–15 nm
dipole separation range. The Förster radius of the QD-bR coupling system is calculated to be 7.94 nm.

dimension of approximately 5 nm [34], 0.5 nm biotin length,
QD shell thickness of 1 nm, and retinal location in the center
of bR, 2 nm from the biotin/streptavidin bond.

In the present work, it was possible to biotinylate a single
point on the bR molecule. Specifically, this linkage occurs
on the Lysine 129 (K19) residue on the extracellular side of
the protein when reacted at the proper pH [35]. It has been
previously shown that bR retains its functionality after biotin
attachment [36]. Thus, when streptavidin-coated quantum
dots were incorporated into the system, they attached to the
available biotin molecules on the bR at a single point.

To efficiently create a QD-bR linkage utilizing an EDC
cross-linker, the following procedure was followed to create
the QD-bR coupled pair. Initially 25 μL of Invitrogen ITK
Carbolxyl QD (8 nmol/L stock) was added to 60 μL 2-(N-
morpholino)ethanesulfonic acid (MES) buffer solution. The
MES buffer was prepared to 0.1 M MES, 0.5 M NaCl at pH
5.0. Care was taken to choose a buffer that would allow
for low pH stability along with remaining unreactive to the
EDC molecule. In a separate vial 3 mg sulfo-NHS is added to
0.5 mL MES buffer solution, followed by the addition of 1 mg
EDC. Once mixed, 25 μL of the EDC/sulfo-NHS solution
is added to carboxyl QDs to create amine-reactive carboxyl
groups. This step is reacted for 15 minutes and is ultimately
quenched by the addition of 0.2 μL of 2-mercaptoethnol
to quench any unreacted EDC. The nonreacted material is
removed via a desalting spin column, and the MES buffer is
exchanged for a 50 mM borate buffer, pH 8.3. The created
amine-reactive QDs were split into two equal volumes to
perform linkage reactions with both PM fragments and bR
monomers and achieve a 1 : 1 QD : bR ratio. The protein is
mixed with the EDC-functionalized QDs for 2 hours at room
temperature to allow for maximal amide linkage formation.
The unreacted amine-reactive groups are quenched by the
addition of 2 uL hydroxylamine, which provides an excess of

amines for binding. Finally, the reacted solution is filtered
through a desalting spin column to remove the quenching
agent.

2.2. Preparation of bR Monomers. To reduce the fragment
size of the PM patches, the use of a detergent to solubilize
bR monomers was used. Specifically, the detergent octyl-
β-D-glucoside (OG) was used. The addition of OG above
its critical micelle concentration (CMC) of 25 mM will
allow the OG to penetrate and remove the PM lipid layer
and form hydrophilic micelles with bR monomers. Over
time, on the order of a day or more, the presence of
OG will denature bR. The first step was to optimize the
concentration of OG added to the PM solution and the
amount of mixture time to provide the highest degree of
protein solubilization while minimizing bR denaturation.
Our analysis indicates that the optimal OG concentration
ranged between 60 mM and 80 mM. These values gave the
highest degree of bR solubilization with relatively low bR
denaturation. The results also show that the optimal length
of time to solubilize the PM ranges between 6 and 12 hours.
Using an OG concentration of 70 mM, the pH of the OG
solution was studied. The results for bR solubilization and
denaturation with 70 mM OG over a range of pH values
found that the optimal pH was 6.9 to relatively maximize
solubilization with minimal bR denaturation.

3. Results and Discussion

Since the basic energy transfer mechanism of a QD-bR pair
is unknown, the theoretical energy transfer efficiency of
this hybrid system was modeled. In order to calculate the
theoretical FRET efficiency of a QD-bR coupled system, the
Förster radius was first determined. The Förster radius (Ro) is
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Figure 3: QD quenching effects of bR (PM patch and bR monomer forms) when linked to a CdSe/ZnS QD via (a) EDC and (b)
biotin/streptavidin binding scheme. Inset images illustrate each linkage and estimate the QD-bR retinal separation distance to be 3.5 nm
and 8.5 nm for the EDC and biotin/streptavidin linkages, respectively.

the separation between the QD core and the bR retinal where
50% of the QD’s energy is transferred to the bR retinal via
nonphotonic energy transfer, defined as

R6
o =

(
8.8 × 1023 mol

)(
κ2)(ηD

4)(ΦD)(J(λ)), (1)

where κ is the dipole orientation factor (0.66 for random
dipole orientation), ηD is the refractive index of the medium
(1.33 for water), ΦD is the quantum yield of the donor (0.62),
and J is the normalized overlap integral between the donor
and acceptor at each specific wavelength (λ). The J-integral
is calculated using the (2), where fD is the peak normalized
fluorescence spectrum of the donor, εA is the molar absorp-
tion coefficient of the acceptor (63,000 M−1 cm−1), and λ is
the wavelength:

J =
∫

fD(λ)εA(λ)λ4∂λ. (2)

Using these equations, Ro is calculated to be 7.94 nm for
a 565 nm QD/bR system and 7.76 nm for a 595 nm QD/bR
system. Thus, with a separation of 7.94 nm between the
QD and bR retinal molecule, half of the QD output energy
should be transferred to the bR molecule nonphotonically
through the energy transfer process depicted in Figure 2(a).
The theoretical calculations also suggest that adjusting the
QD emission peak from 565 nm to 595 nm only decreases
Ro by 0.19 nm; therefore, the use of QDs with an emission
peak directly at 570 nm is not critical. With the Förster
radius values determined, the theoretical FRET efficiency (E)
at varying QD-bR separation distances can be determined
using (3) and is plotted in Figure 2(b):

E = Ro
6

Ro
6 + R6

. (3)

Here, a QD serves as the energy “donor” and a bR
molecule serves as the energy “acceptor.” This nonradiative
energy transfer, from a QD to a biomolecule, reduces
(quenches) the fluorescence intensity of the QD and results
in photoinduced changes, such as conformational change,
proton release, and new binding events in the “acceptor”
biomolecules that can be further utilized for sensing, detec-
tion, or a source of photocurrent. As seen from Figure 2(b),
the energy transfer of a QD-bR hybrid can be altered
substantially with subnanometer separation changes around
the Förster radius. Thus, the optoelectronic properties of
bR could potentially vary greatly through control of QD-bR
separation to meet a specified criterion.

This study utilizes both short (EDC) and long (biotin
/streptavidin) linking schemes to ensure QD-bR nanoscale
proximity. At these varied separation distances, the energy
coupling relationship between QDs and bR, in both the
purple membrane fragment and bR monomer form, was
analyzed. The QD quenching effects of each bR form at the
given separation distance is shown in Figure 3.

The QD quenching phenomena shown in Figure 3
demonstrate energy transfer to the bR retinal from the
excited CdSe/ZnS QD through both radiative and nonra-
diative mechanisms. In Figure 3(a), the “zero-length” EDC
linker was applied to bring the QD and bR molecule into a
constant 3 nm–5 nm separation distance. With the achieved
bR-QD separation distance a 52%, reduction in QD emission
was observed when linked to bR in the purple mem-
brane patch form, which is due to both photonic (photon
absorption) and nonphotonic energy transfer events. The
observed 52% nonphotonic energy transfer is far less than
the predicted value at the set separation distance, which is
likely due to bR being applied in its native PM patch form.
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Figure 4: QD lifetimes when linked to bR in PM patch form
and bR monomer form compared to the QD only control. Inset
displays identical QD excited state lifetime counts in Log-scale with
theoretical fitting (dashed).

The PM patch containing the bR and its associated lipids can
be considered a macromolecule, with a diameter of∼470 nm,
which will fold and conform to its lowest energy state in the
aqueous solution. The folding of this macromolecule likely
results in many bR molecules being inaccessible to the QDs,
ultimately limiting the number of bR molecules available
for linkage to the QD, and thereby reducing energy transfer
efficiency.

To facilitate maximal QD-bR linkage, a lipid-removal
process was performed on the PM patch to isolate indi-
vidual bR monomers. Specifically, the detergent octyl-B-D-
glucoside (OG) was used to delipidate the PM. With bR
in its monomeric form, it was attached to the QD with
the aforementioned EDC linkage protocol. As shown in
Figure 3(a), the resulting energy transfer efficiency of the
EDC-linked QD-bR monomer hybrid system was 88.2%,
demonstrating a substantial increase in QD quenching
resulting from bR monomer proximity. The high degree
of QD energy coupling at this short bR-QD separation
more closely matches the theoretical FRET calculations in
Figure 2(b); however, the actual FRET contribution versus
traditional photon absorption processes is not isolated from
this analysis.

As FRET is based on the inverse-sixth power of
donor/acceptor separation distance, adjusting the QD-bR
proximity should have a profound effect on energy transfer.
We demonstrate this distance-dependent phenomenon by
implementing the biotin/streptavidin linkage to increase the
estimated QD-bR retinal separation distance to 7 nm–9 nm.
As shown by the QD emission spectrum in Figure 3(b), the
linkage of QDs to bR in the PM patch form results in a
QD photonic emission reduction to 32.6% energy transfer
efficiency. As with the EDC linkage, biotinylated bR in the
monomeric form was also linked to the streptavidin-coated
QDs and resulted in enhanced QD quenching. The greater

accessibility of QDs to the bR monomers resulted in an
energy transfer efficiency of 51.1%.

In order to establish a FRET coupling relationship
between the QD core and bR retinal that is involved in the
QD emission reduction, as opposed to other absorptive or
concentration effects, the excited state lifetime of the QD
was measured. Utilizing a 100fs laser excitation pulse with
a 25 ps resolution detection technique, the QD electrons
were excited and the electron-hole recombination rates were
measured. In a FRET-coupled system, a portion of the excited
electron energy will transfer to the overlapping energy band
in the acceptor molecule, thus reducing the amount of QD
photons released over time and ultimately reducing the
QD excited state lifetime. With this technique, the energy
transfer relationship can be isolated from other quenching
phenomenon and concentration effects. The fluorescence
lifetimes were measured at the QD emission maximum of
565 nm and monitored the electron energy transfer to bR,
in both monomeric and PM fragment form, when directly
linked via a zero-length EDC linker. The wavelength of the
excitation laser was set to 340 nm to minimize activation of
the bR photoresponse. Figure 4 shows the excited state decay
spectra of QD, QD-PM, and QD-bR monomer systems.

The spectra display multiexponential decays, with the
carboxyl-QD control group yielding excited state lifetimes of
τQD1 = 4.7 ns (8.3%), τQD2 = 17.9 ns (83.6%), and τQD3 =
58.9 ns (8.1%), the percentage values indicate proportion of
total lifetime contribution. The overall effective lifetime of
the QD excited state was calculated to be τQDeff = 18.0 ns
(χ2 = 1.195). Energy transfer systems based on core-
shell QD donors typically display biexponential decays with
fast (several nanoseconds) and slow (tens of nanoseconds)
components. Multiple theories for the origins of the fast/slow
decay channels exist, suggesting delocalized/localized carriers
[37] or core/surface states [38]. The best fit lifetimes for
the QD control was found to correspond to three different
lifetime channels, with the third channel likely due to
electron trapping in the QD functionalization layer [39].

With the introduction of chemically linked PM patches,
resulting in an approximate 3 nm–5 nm bR retinal-QD sepa-
ration, the QD lifetimes reduce to τH-PM1 = 4.2 ns (9.2%),
τH-PM2 = 17.0 ns (82.5%), and τH-PM3 = 49.7 ns (8.3%),
with the H subscript representing “QD-Protein Hybrid.”
Concurrent with traditional fluorescence measurements,
shown in Figure 3(a), the linking of bR monomers to the QD
substantially increases the coupling effect, resulting in a QD
lifetimes of τH-bR1 = 1.3 ns (5.2%), τH-bR2 = 5.6 ns (25.8%),
τH-bR3 = 16.9 ns (62.8%), and τH-bR4 = 66.1 ns (7.2%). A
possible additional slow decay channel, not apparent in the
QD-PM hybrid, is seen in the QD-bR monomer fit. The
overall effective lifetime of the QD-PM and QD-bR linked
systems was determined to be τH-PMeff = 16.8 ns (χ2 = 1.166)
and τH-bReff = 13.3 ns (χ2 = 1.114), suggesting energy
transfer efficiencies of 6.7% and 26.1% for the QD-PM and
QD-bR complexes, respectively. The FRET efficiency values,
when compared to the overall QD quenching in the QD-
bR hybrid system, accounts for 12.9% and 29.7% of the
transferred energy in the QD-PM and QD-bR monomer
systems, respectively. The greater degree of FRET coupling
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in the bR monomer system is expected due to increased
access/binding potential of the QDs to the bR molecules.

Unlike many traditional QD-bio FRET coupled systems,
the acceptor molecule bR in the present study does not utilize
the transferred energy for photon generation. Instead, the bR
likely dissipates this energy through both vibrations and con-
formational changes associated with the bR photocycle. The
observed multiexponential decay timeline suggests variation
of QD decay dynamics with the incorporation of bR due to
the relative increase of the slower QD lifetime components.
In the QD-PM hybrid, the additional decay channel is
potentially due to the transfer of fast excitonic energy from
the excited QD to the bR retinal, rapidly initiating the bR
photocycle and altering the bR absorption in such a way
that likely reduces the efficiency for further energy transfer.
Further studies will evaluate if the coupled QD FRET energy
contributes to enhancing the bR photoelectric output.

4. Conclusion

In summary, FRET between CdSe/ZnS core-shell QDs and
bR has been demonstrated. Advantage is taken of the bR
570 nm absorption band overlap and the intense energy
emission of engineered QDs. Enhanced FRET efficiency is
observed when QDs are coupled directly to bR monomers
rather than the PM fragments containing bR and its asso-
ciated lipids, likely due to the absence of steric hindrances
and limited protein availability due to membrane folding
in the control PM fragments, ultimately facilitating greater
bR-QD interactions. Further, directly bound QD-bR hybrids
via EDC show greater energy transfer efficiency than biotin-
streptavidin linked QD-bR conjugates, demonstrating the
distance-dependent nature of this FRET coupled system.
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